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A
s stated in Part 1 of this article (Bhattacharyya et al. 2017), 
nanotechnology has been applied in the last 10 to 15 years 
across a wide and increasing range of sectors including health-
care, electronics, food production, and cosmetics. Nanotech-
nology could also improve water and wastewater treatment 

and use, including enabling use of traditionally unconventional water sources. 
Just as with any new technology, there are risks associated with nanotechnol-
ogy use and as such, strategic and wise application is necessary. 

This two-part article is an overview of nanotechnology applications and 
implications within the water industry. Part 1 provided a basic background 
on nanotechnology and literature survey on nanoparticle use, fate, and effects 
in various types of water systems. Part 2 describes the toxicological and eco-
logical impacts of nanoparticles (NPs), reviews analytical measurement tech-
niques, and assesses where novel platforms would be most beneficial.

TOXICOLOGY/ECOLOGY IMPACTS
With rapidly increasing use of engineered nanomaterials, environmental 

release of these contaminants is likely already occurring, perhaps on a sig-
nificant scale. Approximately 6–8% of annual funding from the National 
Nanotechnology Initiative is for assessing environmental health and safety 
of nanomaterials (NNI n.d.). A significant amount of those resources are by 
necessity concerned with occupational human exposure and many ecological 
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questions are unaddressed (Servin & 
White 2016). For both terrestrial 
and aquatic systems, there are 
numerous potential release and 
exposure pathways (Gottschalk & 
Nowack 2011), including inten-
tional release of nano-enabled 
agrichemicals and agents/substances 
for soil remediation (Servin et al. 
2015). Given the widespread use of 
NPs in consumer products, presence 
of engineered nanoparticles (ENPs) 
in the waste stream is anticipated 
(Peijnenburg et al. 2015), and land 
application of resulting biosolids 
represents an indirect but potentially 
significant pathway for ENP intro-
duction into agriculture. Ecotoxico-
logical impacts of NPs and the 
potential for bioaccumulation in 
plants and microorganisms is a sub-
ject of current research, as NPs are 
considered to be generated as a 
result of enviornmental effects and 
thus have novel impacts (Figure 1). 
There is consensus in the scientific 

community that understanding 
nanomaterial fate and effects in the 
environment is insufficient. Given 
the size-specific toxicity/risk con-
cerns and the lack of a robust nano-
specific regulatory framework for 
ENP-containing consumer products, 
the discipline of nanotoxicology has 
developed to address these critical 
knowledge gaps.

There has been incremental prog-
ress in this area recently, including 
some comprehensive literature 
reviews that also highlight major 
topics of concern (Schwab et al. 
2016, Gardea-Torresdey et al. 2014, 
Garner & Keller 2014, Batley et al. 
2013, Gottschalk et al. 2013). Most 
research in nanotoxicology has 
focused on detrimental effects of the 
NPs themselves, with the vast major-
ity of work focusing on short-term, 
high-dose assays in model systems. 
Consideration of chronic, low, or 
environmentally realistic dose sce-
narios in more complex systems is 

widely recognized as a more likely 
exposure pathway for sensitive 
receptors, but to date, these scenar-
ios have remained largely unex-
plored (Servin & White 2016). Only 
after these types of investigations 
have been completed can true expo-
sure to human and nonhuman recep-
tors be determined for an accurate 
risk assessment (Holden et al. 2016).

Some early reviews were published 
in an attempt to evaluate nanomate-
rial effects in terrestrial systems 
(Handy et al. 2008, Klaine et al. 
2008). Much of the focus was on 
identifying strengths and weaknesses 
of published studies and, more 
importantly, on highlighting the 
many areas in need of study. Inclu-
sion of appropriate controls, such as 
bulk and ionic treatments, is needed 
for robust experimental design and 
meaningful analysis of the results 
(Bar-Ilan et al. 2012). Studies have 
been published that address most 
aspects of the biotic community; 
however, because many of the expo-
sure concentrations are quite (likely 
unrealistically) high, the literature is 
dominated by reports of toxicity. 
The measured parameters as a func-
tion of exposure range from basic 
physiological assays, such as growth 
or oxidative stress response, to 
highly sensitive molecular and 
“omic” endpoints. For example, 
Jiang et al. (2009) examined the tox-
icity of bulk and NP aluminum, 
silicon, titanium dioxide (TiO2), and 
zinc oxide (ZnO) to three bacterial 
species; with the exception of TiO2, 
NPs were significantly more toxic 
than their bulk counterparts. Gong 
et al. (2011) reported that NP nickel 
oxide was severely toxic to Chlorella 
vulgaris, causing thylakoid dysfunc-
tion and membrane breakage. With 
regard to animal species, Zhang et 
al. (2011) noted that at relatively 
low concentrations (1–100 nM), ex -
posure to NP cerium oxide (CeO2) in -
duced oxidative damage in C. elegans 
and reduced overall life span by 12%. 
Hu et al. (2010) observed that expo-
sure to NP TiO2 and ZnO caused 
significant toxicity to the redworm 

FIGURE 1 Schematic of generation of nanoparticles
 and environmental impact
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Eisenia fetida. Many reports investi-
gating NP toxicity to plants as mea-
sured by germination, growth, or 
other physiological parameters have 
been published (Schwab et al. 2016, 
Ma et al. 2015, Yin et al. 2012). 
Atha et al. (2012) used mass spec-
trometry to show that 1,000 mg/L 
CuO (copper oxide) NP increased 
oxidative modification of DNA 
bases in radish relative to corre-
sponding bulk particles. Marmiroli 
et al. (2014) used a genome-wide 
transcriptomic approach to charac-
terize Arabidopsis thaliana toxicity 
from and tolerance to cadmium sul-
fide quantum dots. Majumdar et al. 
(2015) used a proteomic analysis to 
show that NP CeO2 exposure caused 
significant alterations in the protein 
profile of exposed kidney beans, 
potentially compromising nutritional 
quality and raising significant food 
safety concerns. Pagano et al. (2016) 
used a transcriptomic approach to 
evaluate the response of three crop 
species to NP (bulk, ion) CeO2, lan-
thanum oxide, and CuO; the authors 
report NP-specific effects in both 
molecular  and physiological 
response to exposure. 

Similar to terrestrial environments, 
a number of reviews have sought to 
describe the current literature on 
nanomaterial fate and effects in 
aquatic systems (Peijnenburg et al. 
2015, Quik et al. 2014, Schultz et al. 
2014). The literature contains a rela-
tively large number of studies looking 
at NP toxicity to a range of species 
under varying conditions (Binh et al. 
2014, Garcia-Gomez et al. 2014, 
Lopez-Serrano et al. 2014, Angel et al. 
2013, Pang et al. 2013), and although 
little consensus is available, it is nota-
ble and not surprising that most mate-
rials are more toxic in aquatic systems 
than in terrestrial environments. Dale 
et al. (2015) and Koelmans et al. 
(2015) both offer perspectives and 
recommendations on modeling NP 
fate in aquatic media. Similarly, 
Petersen et al. (2015) and Schultz et 
al. (2014) offer thorough evaluations 
of current toxicity testing regimes for 
NPs in aquatic environments. 

Several difficulties are apparent 
when reviewing literature on nano-
material effects in the environment. 
Particle type-specific and species-
specific response is common. In addi-
tion, growth/exposure conditions 
and overall system complexity dra-
matically impact observed effects. 
Many published studies involve 
short-term, high-dose exposures in 
media that may have little environ-
mental relevance (Servin & White 
2016). Although this experimental 
approach was a valid and necessary 
first step in addressing NP toxicity, 
the data generated are not sufficient 
for determining true risk to sensitive 

receptors in the environment. Lastly, 
the lack of robust detection plat-
forms for NPs in complex environ-
mental media (soils, sediments, 
biotic tissues) remains a major hur-
dle. Although techniques to deter-
mine effects are mature and range 
from the biochemical to the molecu-
lar (the various “omics”), thor-
oughly characterizing the nature of 
the toxicant at the time of exposure 
remains problematic. 

LABORATORY METHODS FOR NP 
DETECTION

A variety of analytical techniques 
are used for detecting nanomaterials, 
depending upon type of physiochem-
ical property or other information 
sought. Several technologies have 
been developed to characterize either 
bulk nanomaterials or individual 
NPs (including the subset of materi-
als termed “quantum dots”). While 
the list of potential physical and 
chemical properties is expansive, a 
short list of most commonly sought 
properties includes (1) size distri-
bution, (2) shape, (3) composition, 

(4) physiochemical structure, and (5) 
agglomeration state. For a more 
complete list, including analytical 
techniques for measuring proper-
ties, see Table 1. 

Recently nanomaterial charac-
terization has seen considerable 
growth by application of induc-
tively coupled plasma–mass spec-
trometry (ICP–MS) to analyze 
single particles (sp–ICP–MS) (Lee 
& Chan 2015). The benefit of this 
approach is a simplified sample 
preparation or even a direct, dilute-
and-shoot approach. After in-line 
dilution, sp–ICP–MS can be used to 
analyze each separate NP as it is 

aerosolized and ionized in the 
plasma, resulting in a signal intensity 
that is directly proportional to par-
ticle size. The mass-to-charge ratio of 
resulting ions can subsequently be 
used to provide elemental analysis. 
Taken together, the analysis from an 
sp–ICP–MS can therefore provide 
elemental composition of most 
nanomaterials (although only a sin-
gle isotope can be determined at a 
time), size distribution, and concen-
tration of the nanomaterial in the 
test solution. The typical lower size 
limit of detection for sp–ICP–MS is 
20 nm. This technique may be 
applied to complex or biological 
matrixes, such as processing of 
organic material via enzymatic 
digestion (Linsinger et al. 2013, 
Loeschner et al. 2013) or acidic 
digestion (Loeschner et al. 2011). 

This application of ICP–MS to the 
characterization of nanomaterial fate 
began in the early 2000s, with initial 
focus on leaching silver (Ag) NPs 
from implanted medical devices 
(Furno et al. 2004). Concern has 
also been raised about the increased 

With rapidly increasing use of engineered 

nanomaterials, environmental release of these 

contaminants is likely already occurring, perhaps 

on a significant scale.
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prevalence of Ag NP suspensions used 
in hospitals for their bactericidal 
properties (Chen & Schluesener 
2008), as well as often incorporated 
into other surgical materials for slow 
release (Nangmenyi et al. 2009). 
Long-term exposure to these Ag NPs 
has been shown to result in bioaccu-
mulation in the environment (Judy et 
al. 2011), and accumulation in rats 
has been linked to neurological lesions 
(Tang et al. 2009). Once exposed to 
such nanomaterials, rats can retain the 
particles for up to six months, during 
which time they are slowly excreted 
(e.g., via urine) (Sadauskas et al. 
2009). The US Environmental  
Protection Agency has led research 
on the environmental transformation 
and fate of several types of nanomate-
rials, and has concluded that common 
disinfectants are a significant source of 
potentially toxic nanomaterials in the 
environment. The rise in use of nano-
materials and their potential toxic 

effects stresses the urgency for a nano-
material biomonitoring effort.

Another useful technique for the 
characterization of nanomaterials at 
low concentrations and for simultane-
ous, multiple NP composition analysis 
is the field-flow fractionation, or FFF, 
to ICP–MS (Meermann & Laborda 
2015). The size of the nanomaterial is 
characterized according to its size-
specific mobility within a channel, 
resulting in a distribution of particles, 
called a fractogram. Figure 2 shows 
a screenshot from an ICP–MS run 
for nanoparticles. The benefit of this 
added separatory technique is that 
many particles may be measured at 
the same time, including different 
isotopes, although the throughput is 
more restrictive than sp–ICP–MS. 
The typical lower size limit of detec-
tion of FFF is 1 nm.

Scanning electron microscopy 
(SEM) is another well-established 
method for assessing individual NP 

size. A finely focused electron beam is 
used to scan the surface of a material 
in a vacuum chamber, characterizing 
the surface (or material on the sur-
face) according to shape and struc-
ture, with a resolution of tens of nano-
meters. The addition of an energy 
dispersive spectrometer can further 
permit characterization of larger NPs, 
useful for measuring the spectroscopy 
of backscatter X-rays from the initial 
electron beam scan (thus providing 
compositional analysis). 

With the advent of transmission 
electron microscopy (TEM), the min-
imum size resolved can be <10 nm, 
and is often coupled to X-ray spec-
troscopy techniques to further char-
acterize NP composition (X-ray 
energy dispersive spectrometer) (Pyrz 
& Buttrey 2008). Additionally, the 
TEM penetrates the sample, provid-
ing additional material characteris-
tics. Information for an individual or 
bulk nanomaterial using a TEM can 

FIGURE 2 Screenshot from an ICP–MS for nanoparticle analysis

Source: DC Public Health Laboratory

ICP–MS—inductively coupled plasma–mass spectroscopy
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include structure, crystallography, 
and chemical composition of the 
material. Recent work has compared 
TEM with other methods for NP 
characterization, including dynamic 
light scattering, sedimentation flow-
field fractionation, asymmetrical 
flow-field flow fractionation, and 
centrifugal liquid sedimentation 
(Cascio et al. 2014).

A limitation of both SEM and 
TEM has been the requirement of 
placing samples in a vacuum for 
analysis. This limitation has recently 
been addressed by the emerging tech-
nique called environmental transmis-
sion electron microscopy, whereby a 
thin, electron-transparent window 
separates the beam and the sample 
(Takeda & Yoshida 2013).

There have been recent advances 
in the use of surface enhanced 
Raman spectroscopy (SERS) to 
detect Ag NPs in complex matrixes, 
including consumer products and 
food (Guo et al. 2016, 2015; Zhang 
et al. 2016). Here the approach is to 
use indicator molecules (ferbam, 
4-mercapto-benzoic acid) that bind 
specifically to the Ag NP (not ion or 
bulk), resulting in a complex that 
generates a unique SERS signal that 
can be readily detected. Current 
efforts are focused on expanding the 
list of various engineered NPs detect-
able by this procedure as well as 
lowering detection limits in a range 
of additional complex matrixes. 

Common environmental and indus-
trial nanomaterials that may accumu-
late in humans include TiO2, associated 
with neurological lesions (Wang et al. 
2008a, 2008b), CuO, associated with 
kidney and liver lesions (Liu et al. 
2009), TiO2/ZnO/CeO2, associated 
with oxidative stress (Xia et al. 2008), 
and cadmium selenide/zinc sulfide, 
associated with acute toxicity (Pace et 
al. 2010). In the latter case, not only is 
the nanomaterial itself toxic, but any 
solubilized cadmium that leaches from 
the nanomaterial is also toxic.

Morphology of the nanomaterial 
is also a significant characteristic—
smaller NPs are generally more toxic 
than larger ones (Liu et al. 2010), 

and the more aspherical NPs are 
more toxic than spherical (Stoehr et 
al. 2011, Sun et al. 2011). Thus, in 
developing a clinical assessment for 
nanomaterials in specimens, one 
needs to focus on composition and 
morphology as well as the presence 
of dissolved toxic elements.

ICP–MS technology has been spe-
cifically used to detect the presence 
of suspect toxic elements (not spe-
cifically NPs) in biological speci-
mens, including TiO2 (Schmidt & 
Vogelsberger 2006), CeO2 (Patil et al. 
2007), beryllium (Huang et al. 2011), 
gold (Scheffer et al. 2008, Kerr & 
Sharp 2007), platinum (Gehrke et al. 
2011), and silicon dioxide (Gonzalez et 
al. 2010). Use of ICP–MS with SEM or 
TEM orthogonally has been beneficial 
in demonstrating that composition, 
concentration, and morphology all 
play roles in assessing overall NP toxic-
ity (Beltrami et al. 2011, Chen et al. 
2010, Sonavane et al. 2008).

CONCLUSION
Assessment of future use of  

nanotechnology-based water treat-
ment must take account of both the 
risks and opportunities. The regula-
tory, ethical, legal, and social impli-
cations of nanotechnology require 
additional research in developed as 
well as developing counties. There 
are reports on the potential health 
and environmental risks of using 
nanotechnology for water treatment 
(Kumar et al. 2014), but the full 
effects of exposure to nanomaterials 
at water treatment plants or in 
drinking water are yet to be deter-
mined. While nanotechnologies have 
tremendous potential to address 
global water problems, water profes-
sionals and scientists need to work 
constructively to discuss and engage 
in dialogues with industries and local 
communities to understand the prob-
lems and opportunities for applying 
nanotechnology to water improve-
ments. The lack of regulatory aspects 
for the of use of nanotechnology 
demands partnering among research-
ers, communities, and industry in 
public and private sectors to encourage 

and support novel research and 
innovative applications, develop 
positions for related policies, and 
develop appropriate business models 
to sustainably exploit the potential 
in field of nanotechnology. 
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