
30      BHATTACHARYYA ET AL.   |   NOVEMBER 2017 •  109 :11    |   JOURNAL AWWA

I
n the last 10–15 years, the application of nanotechnology in sectors as 
wide ranging as disease treatment and health, electronics, food produc-
tion, and cosmetics has increased dramatically. There is also potential 
for nanotechnology to improve water and wastewater treatment and 
use, including enabling use of traditionally unconventional water 

sources. However, like any new technology, there are risks associated with 
nanotechnology use; as such, strategic and wise application is necessary. 

Broken into two parts, this article provides an overview of nanotechnology 
applications and implications within the water industry. Part 1 provides a 
basic background on nanotechnology before surveying the literature on 
nanoparticle use, fate, and effects in various types of water systems. Part 2 
reviews particle detection techniques and provides an assessment of where 
novel platforms are needed.

INTRODUCTION
Water is a scarce resource. For many countries, particularly those where 

water supplies are overallocated, providing clean and affordable water to meet 
human needs is a grand challenge of the 21st century. According to the United 
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Nation’s Millennium Development 
Goals (UN 2017), a significant pro-
portion of the world’s population 
will soon lack sustainable access to 
safe drinking water. (Goal 7 is to 
ensure environmental sustainability; 
Target 7.C, which was achieved, was 
to cut in half the number of people 
in the world without access to safe 
drinking water and basic sanitation.) 
Nanotechnology holds great potential 
in advancing water and wastewater 
treatment to improve treatment effi-
ciency, as well as to augment the 
water supply through safe use of 
unconventional water sources. This 
article is intended to serve as a primer 
for environmental scientists, engi-
neers, water professionals, laboratory 
personnel, and others interested in 
sources, use, and application of nano-
technology within the water industry. 
Information presented here is a high-
level overview of selected topics, with 
references to additional information. 

There is no single, universally 
accepted definition of nanotechnology, 
nanomaterial, or nanoscience. This 
article follows the definition provided 
by the National Nanotechnology  
Initiative (NNI n.d.), a research 
collaborative composed of 20 US 
federal agencies: 

Nanotechnology is science, engi-
neering, and technology conducted 
at the nanoscale, which is about 1 to 
100 nanometers. Nanoscience and 
nanotechnology are the study and 
application of extremely small 
materials and can be used across 
most other fields of science, such as 
chemistry, biology, physics, materi-
als science, and engineering. 

In short, nanotechnology addresses 
the use of purposefully engineered 
particles across many disciplines.

A nanometer (nm) is one-billionth 
(10–9) of a meter, and is approxi-
mately 100,000 times smaller than 
the diameter of a human hair. Nano-
materials have one dimension less 
than 100 nm in length, and nanopar-
ticles are nanomaterials with at least 
two dimensions less than 100 nm in 

length. The unique phenomena asso-
ciated with nanoparticles result from 
surface area and particle size. At the 
physical scale of a nanometer, or the 
nanoscale, quantum effects control 
particle properties. By controlling 
the particle size, it is possible to con-
trol the properties of the material. 
An example of this is demonstrated 
by the antimicrobial characteristics 
of nanosize silver, which is far less 
effective when aggregated into larger 
silver particles. 

Nanoparticles (NPs) are every-
where and may include engineered 
nanomaterials and those occurring 
naturally (e.g., clays) or incidentally 
created (e.g., combustion products). 
They are produced from forest fires 
(and other combustion processes), 
volcanic ash, dust storms, and 
ocean spray, and have been found 
in pottery glazes from the ninth 
century in Mesopotamia. Estimates 
predict that nanomaterials will be 
a $3 trillion business by 2020 
(Nasdaq GlobeNewswire 2011). 

They are found in products rang-
ing from clothing and doughnuts 
to paint and sunscreen (Figure 1). 
Current and future applications 
include targeted medicines, water 
treatment, biochips, tissue regenera-
tion, and other uses not yet conceived. 

Engineered NPs are currently used 
in more than 1,800 commercially 
available consumer products, includ-
ing personal care products, food 
storage containers, cleaning supplies, 
bandages, clothing, and washing 
machines (Reijnders 2006). NPs are 
released into the domestic waste 
stream during use, cleaning, and dis-
posal, leading to NPs in surface 
waters (Benn & Westerhoff 2008, 
Blaser et al. 2008, Mueller & 
Nowack 2008). Estimated concen-
trations of NPs in US surface waters 
reach up to 10 µg/L silver (Ag), 24.5 
µg/L titanium dioxide (TiO2), and 74 
µg/L zinc oxide (ZnO) (Gottschalk 
et al. 2009, Blaser et al. 2008, Mueller 
& Nowack 2008). Concentrations in 
surface water are anticipated to 
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FIGURE 1  Examples of products and places in which nanoparticles 
 are found
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increase over time with greater use 
and disposal of NP-containing prod-
ucts (Klaine et al. 2008). Because of 
increasing NP concentrations in sur-
face waters, the ultimate fate of NPs 
is an important consideration for 
drinking water vulnerability (Troester 
et al. 2016). When suspended in the 
water column, NPs are likely to affect 
aquatic organisms (Callaghan & 
MacCormack 2016, Handy et al. 
2008) and be present in surface 
waters used as a source for drinking 
water. Environmental fate and trans-
port of NPs are often related to NP 
dissolution (Van Koetsem et al. 2017, 
Elzey & Grassian 2010) and aggre-
gation of NPs into larger agglomer-
ates, which are more likely to settle 
out of suspension (Li et al. 2016, 
Petosa et al. 2010). The extent of 
aggregation, final NP size, and inter-
action with natural organic matter 
(NOM) will affect efficiency of NP 
removal during drinking water treat-
ment (Leudjo Taka et al. 2017, Hyung 
& Kim 2009, Zhang et al. 2008).

WATER ENGINEERING/WATER 
TREATMENT: NP USE IN DRINKING 
WATER TREATMENT 

Water treatment is one of the main 
strategies to prevent the ingestion of 
harmful contaminants, including 
NPs, from drinking water (Hyung & 
Kim 2009). Drinking water treat-
ment provides a barrier to contami-
nant exposure via ingestion of pota-
ble water. However, the occurrence 
of NP breakthrough into finished 
water after traditional coagulation/
flocculation/sedimentation and 
membrane filtration is likely to 
happen if higher NP concentrations 
are in the environment as a result 
of increased industrial disposal of 
NP-containing products or excessive 
NP accumulation over time. 

The US Environmental Protection 
Agency (USEPA) sets guidelines for 
total organic carbon (TOC) removal 
by coagulation on the basis of initial 
TOC and alkalinity to monitor effec-
tive drinking water treatment for 
NOM removal (USEPA 1999). Water 
treatment plants use turbidity and 

TOC as surrogate measures for 
NOM and contaminant removal. In 
addition to conventional treatment, 
use of low-pressure membrane 
(LPM) filtration as an advanced 
water treatment technique has 
increased in prevalence over the past 
two decades (Huang et al. 2009). 
Unlike conventional treatment, LPM 
filtration relies on physical sieving to 
remove particulate contaminants 
(Crittenden et al. 2012), and the pore 
size of membranes employed in LPM 
filtration is expected to affect the 
removal of NPs in water. The 
Comprehensive Environmental 
Assessment approach used by 
USEPA includes a product life-cycle 
perspective with risk assessment, 
estimating the fate and transport 
processes, exposure-dose character-
ization, and indirect as well as direct 
ecological and human health impacts 
resulting from water-mediated NP 
exposure (USEPA 2012) (Figure 2). 

Removal of NPs through drinking 
water treatment is not well under-
stood. TiO2 and ZnO NPs spiked into 
buffered, ultrapure, and tap water 
were removed at rates >60% using 
alum coagulation and sedimentation 
(Zhang et al. 2008). Using carbon 
fullerene NPs spiked into synthetic 
freshwater, NP removal by simulated 
conventional treatment was correlated 
with NOM concentration (Hyung & 
Kim 2009). However, information on 
NP removal from natural waters with 
complex chemistries that can affect 
NP aggregation, dissolution, and 
removal are very limited. Use of sensi-
tive instrumentation, such as induc-
tively coupled plasma–mass spectrom-
etry (ICP/MS) with sensitivity in the 
nanograms-per-liter range, is neces-
sary to accurately assess removal of 
elements from drinking water. Before 
ICP/MS technology, lack of accurate 
elemental detection in finished drink-
ing water limited understanding of NP 
exposure via this route.

Recent studies using Ag, TiO2, and 
ZnO NPs (commonly present in con-
sumer products) investigated 
removal of NPs during conventional 
and advanced water treatment, 

determined the effects of NP and 
water properties on the removal pro-
cess, and investigated the magnitude 
of NPs and released ions not removed 
(“breakthrough”) by treatment pro-
cesses. Simulated conventional treat-
ment resulted in 10–20% NP break-
through; membrane filtration, 
especially ultrafiltration, was more 
effective than conventional treatment 
for NP removal. Despite high reduc-
tions, finished waters contained 
detectable metal concentrations that 
may pose hazards to human health. 
NP removal by both treatment pro-
cesses would likely affect NP stability, 
including aggregation and dissolu-
tion. Removal of NPs was evaluated 
by measuring traditional water 
quality parameters such as turbid-
ity reduction, TOC removal, and 
ultraviolet/visible light absorbance 
(Abbott Chalew et al. 2013). As the 
prevalence of NP-containing products 
increases, there is greater likelihood 
that NPs will contaminate drinking 
water resources. NPs should be con-
sidered an emerging drinking water 
contaminant, and their removal dur-
ing drinking water treatment should 
be monitored to protect public health.

Inorganic engineered NPs in drinking 
water treatment. Incorporation of 
engineered NPs into drinking water 
treatment techniques for the removal 
of heavy metals, microorganisms, and 
organic pollutants is a dynamic 
branch of nanotechnology. Recent 
studies (Simeonidis et al. 2015) 
reviewed the outcomes of inorganic 
engineered NP development with 
direct or potential interest for drink-
ing water treatment. Because of high 
particle-specific surface area and sur-
face reactivity, these inorganic NPs 
are more effective when compared 
with conventional bulk materials. 
Depending on the mechanism of 
uptake, NPs can be designed to 
establish high selectivity for specific 
pollutants and provide required 
removal efficacy. However, NPs have 
a number of limitations that must be 
addressed before becoming part of 
large-scale water treatment plants. 
Most important is availability in suf-
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ficient quantities, efficiency to meet 
strict drinking water regulations, 
and environmental safety impacts. A 
critical task in design of engineered 
NPs and incorporation into the tech-
nological field is to ensure stability 
against aggregation and chemical 
transformations during storage, han-
dling, and use. Particle preparation 
and treatment operation costs must 
be considered with respect to 
increased pricing of supplied water to 
consumers. In addition to increased 
pricing for the consumer, a risk 
assessment with respect to use, dis-
posal, and potential effects of release 
to the environment relative to effec-
tive NP use for various water treat-
ment applications must be completed. 
Future research efforts should be ori-
ented to evaluate engineered NPs 
under more reliable field conditions 
to assist assessment of potential large-
scale commercialization.

NPs IN WASTEWATER
It is not surprising that NPs used in 

consumer products will end up in 

wastewater (Cervantes-Avilés et al. 
2017, Park et al. 2016, Wang et al. 
2016) . A  r ev i ew a r t i c l e  i n  
Environmental Science: Processes 
and Impacts indicates that most of 
the NPs in wastewater will end up 
in the sludge, which is then land-
applied or disposed in landfills. 
Residual NP concentration will be 
in the tens of parts-per-billion range 
for treated wastewater and in the 
parts-per-million range in the sludge 
(Yang et al. 2013, Zhang et al. 
2016). The effect of metallic and 
metal oxide NPs on waste and 
wastewater treatment and sludge 
digestion is highly dependent on 
aerobic and anaerobic conditions.

Doolette et al. (2013) indicated 
that Ag NPs were transformed to 
Ag–sulfur phases during activated 
sludge treatment (before anaerobic 
digestion). Transformed Ag NPs, at 
predicted future Ag wastewater con-
centrations, did not affect nitrifica-
tion or methanogenesis. Conse-
quently, Ag NPs are very unlikely to 
affect the efficient functioning of 

wastewater treatment plants. How-
ever, Ag NPs may negatively affect 
subdominant wastewater microbial 
communities (Doolette et al. 2013).

The Water Environment Research 
Foundation has information available 
on the effects of Ag NPs on wastewater 
treatment. Work has also been done on 
copper NPs and activated sludge. Chen 
et al. (2014) showed that high concen-
trations of copper NPs (30–50 mg/L) 
increase surface charge and decrease 
hydrophobicity, thereby reducing floc 
formation (WERF 2014). NPs have 
also been reported to be used in waste-
water treatment (Lens et al. 2013, 
Van der Bruggen 2013, Qu et al. 
2013) (see the photograph on page 
34). Nanoscale zero-valent iron is 
effective in removing classes of pollut-
ants like bacteria, metals, and organic 
compounds. The instability of iron in 
the zero-oxidation state causes it to be 
very effective as a reducing agent 
(Holba et al. 2013) Although Ag NPs 
raise some toxicity concerns, there are 
also applications in wastewater treat-
ment (Daniel et al. 2014).

FIGURE 2  An application for polyrhodanine-encapsulated nanoparticles being applied to the process of removal
 of heavy metal ions from aqueous solution
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NPs IN DRINKING WATER
Ingestion of NPs via drinking water 

may pose a direct human health 
threat or an indirect risk resulting 
from release of metal ions from the 
NPs. Exposure to metal NPs or metal 
ions derived from NPs via ingestion 
can result in adverse effects including 
kidney damage, elevated blood pres-
sure, gastrointestinal inflammation, 
neurological damage, and cancer 
(Bar-Ilan et al. 2013, Kavcar et al. 
2009, Vahter 2002). Cell uptake, 
cytotoxicity, and DNA damage in the 
Caco-2 human intestinal cell line have 
been reported after in vitro NP expo-
sure (Abbott Chalew & Schwab 
2013; Gaiser et al. 2012; Gerloff et al. 
2012, 2009; Koeneman et al. 2010). 
NP exposure via drinking water 
ingestion tested using in vivo animal 
studies has revealed adverse effects. 
Rats and mice that ingested metal 
NPs had increased metal concentra-
tions in their liver, kidneys, brain, and 
blood compared with controls (Park 
et al. 2010, Kim et al. 2009, Wang et 
al. 2007. Park et al. (2010) reported 
histological evidence of inflammation, 
as well as increased liver enzymes 
related to necrosis and inflammation, 
in rats and mice in response to Ag and 
ZnO NPs in drinking water. Ingestion 
of metal NPs has also been reported 

to lead to DNA damage (Sharma et 
al. 2012, Trouiller et al. 2009). The 
consequences of increased metal bur-
dens, DNA damage, and liver toxicity 
are not fully understood. However, 
these studies indicate that ingestion of 
NPs can lead to NPs or metal ions in 
systemic circulation with potentially 
adverse health consequences.

Future routine monitoring of NPs 
in public water systems (source and 
finished water) by available analyti-
cal methods in the public health 
laboratories would allow timely 
identification and estimate concen-
tration, as well as facilitate risk 
assessment and intervention strate-
gies for NP exposure related to 
human, plant, and animal health.

NPs IN SURFACE WATER
The impacts of nanomaterials on 

surface water are largely unknown. 
Nanomaterials have several pathways 
for entering surface water systems, 
including runoff from soil applica-
tions, discharges from wastewater 
systems, and direct discharge and dis-
posal from industrial sites and con-
sumer products. Once released into 
water, nanomaterials can undergo a 
number of transformations, including 
degradation, agglomeration, and dis-
solution, among others (Batley et al. 

2013). Unfortunately, the fate and 
transport, and consequently the 
resulting toxicity of nanomaterials in 
water are not well understood at this 
time. Most metal NPs are hydrophilic 
but have low solubility. Other hydro-
phobic materials, such as carbon 
nanotubes and fullerenes, do not dis-
solve as they form stabilized suspen-
sions or aggregate (Batley et al. 2013). 
The predictions concerning toxicity 
and water interactions are compli-
cated further when accounting for 
surface coatings (Batley et al. 2013).

Nanomaterials likely affect all lev-
els of aquatic organisms from coat-
ing algae to accumulating in the 
respiratory systems of vertebrates. 
Additionally, untreated nanomateri-
als are likely to accumulate in ben-
thic sediments (Batley et al. 2013). 
Through modeling, high-volume 
production nanomaterials are pre-
dicted at the following concentra-
tions in surface water following 
expected fate under natural condi-
tions (Maurer-Jones et al. 2013):

•  Ag: 0.088 ng/L to 10,000 ng/L
•  TiO2: 21 ng/L to 10,000 ng/L
•  ZnO: 1 ng/L to 10,000 ng/L
•  Carbon-based (nanotubes/fuller-

enes): 0.001 ng/L to 0.8 ng/L
The wide range associated with the 

predictive concentrations is due largely 
to transformations that individual par-
ticles may undergo, as well as the com-
plex environmental matrixes that may 
be encountered in various aquatic sys-
tems (Maurer-Jones et al. 2013). As 
other nanomaterials move into high-
volume production, this list may need 
to be expanded as research dictates. 
For detecting nanomaterials in water, 
light-scattering techniques are the most 
common methods (Maurer-Jones et al. 
2013). However, similar to soil, drink-
ing water, and wastewater, nanomateri-
als also have beneficial uses in surface 
waters. For example, anchoring 
nanovalent iron onto materials such as 
carbon, silica gel, and other mem-
branes shows potential for remediating 
contaminated waters (Xiong et al. 
2016, Nowack & Bucheli 2007). Addi-
tionally, nanofilm reactors and other 
nanocomposites show similar promise 

Nanoparticles have been used in wastewater treatment. Photo courtesy of Benjamin Martin, 

Thames Water
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with water remediation of methyl  
tert-butyl ether and other organic con-
taminants (Kuvarega & Mamba 2017, 
Nowack & Bucheli 2007).

CONCLUSION
Unlike other technologies, which 

have often sprung directly from a par-
ticular scientific discipline, nanotech-
nology spans a wide spectrum of sci-
ences. Essentially it is defined by the 
scale at which it operates. Operating 
at the nanoscale makes assembling 
atoms and molecules to exact specifi-
cations far easier. In applications such 
as water filtration (Figure 3), this 
means materials can be tailored or 
tuned to filter out heavy metals and 
biological toxins. The unique charac-
teristics of NPs and nanotechnologies 
may help alleviate traditional water 
problems by solving the technical chal-
lenges for removing contaminants 
including bacteria, viruses, arsenic, 
mercury, pesticides, and salt. While the 
affordability of using nanotechnolo-
gies, its effectiveness, efficiencies, and 
durability are being investigated, using 
NPs in the water industry will likely 
enable manufacturing that is less pol-
luting than traditional methods and 
requires less labor, capital, land, and 
energy (Meridian Institute 2007). 
Developing new business models that 
will allow using nanotechnologies as a 
sustainable approach to solving real-
life problems, identified in participa-
tion with local communities, would 
likely be effective to address those 
issues (Grimshaw et al. 2009).
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